Machine learning for predicting lifespan-extending chemical compounds
نویسندگان
چکیده
Increasing age is a risk factor for many diseases; therefore developing pharmacological interventions that slow down ageing and consequently postpone the onset of many age-related diseases is highly desirable. In this work we analyse data from the DrugAge database, which contains chemical compounds and their effect on the lifespan of model organisms. Predictive models were built using the machine learning method random forests to predict whether or not a chemical compound will increase Caenorhabditis elegans' lifespan, using as features Gene Ontology (GO) terms annotated for proteins targeted by the compounds and chemical descriptors calculated from each compound's chemical structure. The model with the best predictive accuracy used both biological and chemical features, achieving a prediction accuracy of 80%. The top 20 most important GO terms include those related to mitochondrial processes, to enzymatic and immunological processes, and terms related to metabolic and transport processes. We applied our best model to predict compounds which are more likely to increase C. elegans' lifespan in the DGIdb database, where the effect of the compounds on an organism's lifespan is unknown. The top hit compounds can be broadly divided into four groups: compounds affecting mitochondria, compounds for cancer treatment, anti-inflammatories, and compounds for gonadotropin-releasing hormone therapies.
منابع مشابه
Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملRanking Chemical Structures for Drug Discovery: A New Machine Learning Approach
With chemical libraries increasingly containing millions of compounds or more, there is a fast-growing need for computational methods that can rank or prioritize compounds for screening. Machine learning methods have shown considerable promise for this task; indeed, classification methods such as support vector machines (SVMs), together with their variants, have been used in virtual screening t...
متن کاملFinding Frequent Substructures in Chemical Compounds
The discovery of the relationships between chemical structure and biological function is central to biological science and medicine. In this paper we apply data mining to the problem of predicting chemical carcinogenicity. This toxicology application was launched at IJCAI’97 as a research challenge for artificial intelligence. Our approach to the problem is descriptive rather than based on clas...
متن کاملModeling Biological Activities of Chemical Compounds: Kernel Methods for Structure Activity Relationship
The function of enzymes as well as the function of proteins involved in regulatory pathways often implies interactions with small chemical compounds. To understand the function of these proteins as well as for applications such as predicting activity or adverse effects of potential drugs we try here to compute the similarity between chemical compounds using a new similarity function based on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017